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Abstract 
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This thesis describes StyleCam, an approach for authoring 3D viewing experiences that 

incorporate stylistic elements which are not available in typical 3D viewers.  StyleCam allows the 

author to tailor what the user sees and when they see it.  The resulting viewing experience can 

approach the visual richness and pacing of highly authored visual content such as television 

commercials or feature films.  StyleCam allows for a satisfying level of interactivity while 

avoiding the problems inherent in using unconstrained camera models.  StyleCam’s main 

components are camera surfaces which spatially constrain the viewing camera; animation clips 

that allow for appealing transitions between camera surfaces; and a simple, unified, interaction 

technique that permits the user to seamlessly and continuously move between spatial-control of 

the camera and temporal-control of the animated transitions.  In addition to describing the 

conceptual model of StyleCam and its current implementation, we present the results of an 

evaluation involving real users. 
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Chapter 1.    Introduction 

The last decade has seen the internet be embraced by companies and manufacturers as a medium 

for delivering information and advertising to consumers.  It is uncommon now for a company not 

to have a presence on the web.  Indeed product overviews, technical specs, photographs, user 

manuals, pricing information and more are readily available online for all but the most obscure 

products.  The internet has allowed companies to deliver traditional media (specification sheets, 

brochures, advertising videos, etc.) to people in the comfort of their home quickly and cheaply.  

In some case, the information and media available online is the same as what one could perhaps 

have mailed to them.  In general, however, the web defines a new medium, the web page, which 

has no traditional equivalent.  A web page is interactive.  A web page integrates and augments 

text, images, audio and video. 

At the same time, computers are getting more powerful every day.  Most people are familiar with 

Moore’s law of processor speed and memory capacity doubling every 18 months.  Computer 

graphics has been a significant recipient of this rapidly increasing computing power, and as a 

result we have reached a stage where it is possible to create and render 3D models in real time on 

off-the-shelf, inexpensive hardware at near photorealistic levels of fidelity. 
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This trend is in turn making it feasible to use interactive 3D models instead of 2D imagery to 

represent or showcase various physical artefacts (products).  Typical examples are online retailers 

who are now starting to provide ways of interactively viewing products in 3D over the web, in 

addition to providing 2D imagery.  This is a tremendous leap forward.  Potential customers can 

interactively explore the virtual product, giving them a better “feel” for the product than a 2D 

image.  According to Andrew Jackson of MGI Software, an Internet software and services 

company, there is a 30 percent increase in sales and a 50 percent reduction in returned goods with 

the use of 3D imaging in online retailing.  Moreover, interactive 3D on a web site has the 

potential to realize longer visitor retention due to the interactive nature of the experience.  Car 

manufacturers have similarly adopted the use of interactive 3D viewing for product showcasing 

both on and off the web, in addition to the traditional professionally produced 2D car brochures.  

At a press conference in Toronto, Torben Ullmann of Pixelconcept GmbH describes the 

deployment of “… a virtual experience that is similar to being in an auto showroom - but with the 

convenience of browsing online” for the German automaker Porsche AG. 

At first glance it may appear that viewing interactive 3D models will soon dominate as the most 

effective product seller’s medium, but a closer look reveals that fundamental problems with 

today’s interactive 3D viewing will severely impede such a trend.  Indeed, interactivity aside, in 

terms of visual experience the current 3D viewers fall quite short of the slick, professionally 

produced 2D images of the same items.  Again looking at the car manufacturer example, a glossy 

automobile sales brochure provides a far richer and more compelling representation of the car to 

the potential customer than the 3D experiences offered on the manufacturer’s website.  If these 

3D viewers are to replace, or at the very least be at par with, the 2D imagery, eliminating this 

difference in quality is critical. 
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Figure 1.1.  Screenshots of QuicktimeVR (left) and Cult3D (right). 

What are we referring to by “today’s interactive 3D viewers”?  What are today’s standards in 

interactive 3D viewing?  Some popular examples that are prevalent on the web are QuickTimeVR 

(QTVR) and Cult3D (see Figure 1.1).  Both of these specifications allow users to explore 3D 

scenes in some constrained way.  Both viewers have very limited camera control metaphors.  

QTVR, in object-centric mode, allows the user to tumble around a central object of interest and to 

zoom in and out.  In panorama mode, QTVR maps 2D mouse movement to the viewing direction 

giving the effect of a stationary observer who can move their gaze up, down and around.  Cult3D 

is slightly more sophisticated.  It supports the “standard” camera controls of 2D tumble, 2D pan 

and dolly, as well as pre-defined key views (e.g. “top” or “front”).  Cult3D also has support for 

changing features based on user interaction.  For example, the user can click on one of several 

color swatches to change the car color.  The viewers use drastically different source data each 

with its own advantages and disadvantages (see chapter 2, detailing image-based versus 

geometry-based viewing).  The bottom line is that although QTVR, Cult3D and other current 

interactive viewers allow 3D content to be viewed interactively, which is entirely new and 

exciting, the experience felt by the user during an interactive session is not exactly compelling.  

Using Cult3D to awkwardly spin a 3D car at low resolution and to “experiment” with various 
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rims, colors and spoiler styles does not compel the user to buy the car nearly to the same extent as 

say the same car’s brochure or television ad.  As such, given the current state-of-the-art, 

interactive 3D can only play a minor role in product advertising or showcasing. 

The reasons for the poor quality of these 3D viewers fall roughly into three categories. First, 2D 

imagery is typically produced by professional advertisers, artists, and photographers who are 

skilled at using this well-established art form to convey messages to a viewer such as information, 

feelings, or experiences, whereas creators of 3D models do not necessarily have the same well-

established skills and are working in an evolving medium.  This problem, however, will work 

itself out as the medium matures. 

The second problem is that of visual quality.  Although advances in computer graphics hardware 

and the development of advanced algorithms are occurring at a high rate, rendering photoreal 3D 

scenes with realistic lighting and reflections, in realtime, at high resolution and on consumer 

hardware is still impossible.  The importance of visual fidelity is significant.  To take an example 

again from the automotive domain, in many ways, automobile stylists do not simply design cars, 

they design reflections.  The car body is a means of obtaining these reflections.  Clearly, to fully 

appreciate the beautiful reflections of an automobile requires faithful rendering of reflections and 

other lighting effects beyond the capabilities of today’s realtime rendering solutions. This 

problem, however, is solvable with better, more powerful graphics hardware.  If the current trends 

continue, it will not be long before such a feat is possible on a $2000 PC. 
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Figure 1.2.  A comparison between a traditional advertising media and interactive 3D media. 

Top row: Scenes from a car commercial shoot vs. the creation of a interactive 3D experience. 
Middle row: Real, high-impact  reflections and lighting vs. real-time rendered lighting effects. 
Bottom row: Beautiful, expressive, action-packed wide-angle close-up with a slight right roll vs. an attempt 
to get same angle in Cult3D (roll and zoom not possible). 
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The third problem with today’s interactive 3D is more troublesome.  Consider, for example, a 

photographer taking pictures of a car for a brochure.  In this scenario, the photographer can 

carefully control all of the elements that make up the shot, including the content, lighting, 

viewpoint and other camera properties (e.g. aperture).  Similarly, the director of an automobile 

television commercial has full control over these same elements, with the additional variable of 

time.  Given this level of control, skilled authors in these media can manipulate the stylistic 

elements of a shot in order to guarantee or at least increase the likelihood that the viewer receives 

the intended message.  In contrast, when designing content for interactive 3D viewing, authors 

must relinquish much of this control to the “audience”.  How can we expect a typical user to 

achieve the results of skilled professionals working in a production environment?  Skimming 

through car brochures, one can quickly note the consistency in the angles from which the cars are 

photographed.  In fact, according to Barry Fogarty of Diginiche, there are fewer than half a dozen 

photographers in Detroit who know how to take photographs of automobiles and only one or two 

people in a car company who are capable of producing renderings of automobiles that meet the 

stringent  demands of this type of presentation (personal communication, Barry Fogarty).  It is no 

surprise that the average user using a 3D viewer will not experience the vehicle in the way the 

designer or marketer intended. 

 
Figure 1.3.  Examples of some poor angles that are obtainable in Cult3D: the underside of a vehicle 

(left), and the unrecognizable interior of a camcorder model (right). 
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In interactive 3D viewing the author can only control the content, the lighting and sometimes the 

camera properties.  In Cult3D, or any other interactive viewer that uses the tumble/pan/dolly 

camera control metaphor, the user is allowed to interactively move the viewpoint within the scene 

to view any part of the 3D model, effectively allowing any arbitrary camera position and 

orientation.  This results in a host of problems: a user may “get lost” in the scene, view the model 

from awkward angles that present it in poor light, miss seeing important features, experience 

frustration at controlling their navigation, etc (see Figure 1.3).  As such, given that the author of 

the 3D experience does not have control over all aspects of what the user eventually sees, they 

cannot ensure that 3D viewing conveys the intended messages. In the worse case, the problems in 

3D viewing produce an experience completely opposite to the author’s intentions! 

The primary goal of our present research is to introduce the same level of author control and user 

experience that we see in print ads and television commercials to the world of interactive 3D 

viewing.  In hopes of achieving this goal, we have developed a system which we call StyleCam.  

StyleCam aims to guarantee a certain level of quality for the user, in terms of visual and 

interactive experience.  Further, we intend that the system should not only avoid the problems 

suggested earlier, but also have the capability to make the interactive experience adhere to 

particular visual styles. For example, with StyleCam one should be able to produce an interactive 

viewing experience for a 3D model of an automobile “in the style of” the television commercial 

for that same automobile. Ultimately, a high-level goal of our research is to produce interactive 

3D viewing experiences where, to use an old saying from the film industry, “every frame is a 

Rembrandt”. 
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Figure 1.4. Images from automobile brochures illustrating successful, compelling visual experiences. 
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Central to our research is differentiating between the concept of authoring an interactive 3D 

experience versus authoring a 3D model which the user subsequently views using general 

controls. If we look at the case of a typical 3D viewer on the web, in terms of interaction, the 

original author of the 3D scene is limited to providing somewhat standard camera controls such 

as pan, tumble and zoom. Essentially, control of the viewpoint is left up to the user and the author 

has limited influence on the overall experience.  Any narrative structure that comes out of the 

experience is purely due to the actions of the user, not the author who is presumably much more 

skilful at such narrative visual experiences. 

From an author’s perspective this is a significant imbalance. If we view an interactive experience 

by cinematic standards, an author (or director) of a movie has control over several major 

elements: content/art direction, shading/lighting, viewpoint, and pacing. It is these elements that 

determine the overall visual style of a movie. However, in the interactive experience provided by 

current 3D viewers, by placing control of the viewpoint completely in the hands of the user, the 

author has surrendered control of two major elements of visual style: viewpoint and pacing. 

Thus we desire a method for creating 3D interactive experiences where an author cannot only 

determine the content and shading but also the viewpoints and pacing. However, intrinsic in any 

interactive system is some degree of user control and therefore, more accurately, our desire is to 

allow the author to have methods to significantly influence the viewpoints and pacing in order to 

create particular visual styles.  Thus, we hope to strike a better balance between author and user 

control. In order to achieve this end, StyleCam incorporates an innovative interaction technique 

that seamlessly integrates spatial camera control with the temporal control of animation playback.  

Figure 1.5 depicts camera surfaces and various types of transitions between them; elements of 

StyleCam which an author can use to influence what the user sees and experiences. 
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Figure 1.5. StyleCam authored elements. 

This thesis is a summary of the body of research that is StyleCam.  The current chapter 

introduced the problems StyleCam aims to solve.  Chapter 2 is a primer on the fundamentals of 

virtual camera movement and its associated user interactions.  Chapter 3 is a literature review of 

past work in virtual camera movement in interactive 3D, that sets the standards by which we will 

compare StyleCam.  In chapter 4, we introduce the conceptual model of StyleCam, showing how 

the vision of an author can be recorded to be subsequently experienced by an audience.  Chapter 5 

explores the previous prototypes that lead to the current StyleCam, describing how each iteration 

improved on the previous.  In chapter 6, we consider StyleCam in the context of the other tools 

that would eventually surround it in the production pipeline.  Included in chapter 6 is an example 

experience, intended to give the reader a feeling of the type of experiences StyleCam can 

produce.  Chapter 8 describes in detail how the StyleCam system was implemented.  An informal 

user evaluation is presented in chapter 9.  Finally, chapter 10 discusses possible future directions 

that we plan to explore with StyleCam. 



 11

Chapter 2.    Basic Concepts 

2.1 Camera & Optical Moves 

This thesis deals primarily with camera movement and user interaction in a computer usage 

context.   It is therefore useful to begin this discussion with a review of some basic camera and 

optical moves used in cinematography.  Figure 2.1 illustrates 6 basic moving camera shots which 

form the building blocks for more complex cinematic shots: 

Dolly – camera movement along the viewing direction, either forward or back. 

Track – lateral camera movement perpendicular to viewing direction, either left or right. 

Crane – vertical camera movement perpendicular to viewing direction, either up or down. 

Pan – rotation of camera about its vertical axis, either left or right. 

Tilt – rotation of camera about its horizontal axis, either up or down. 

Locked-Off – camera remains stationary during shot. 

Zoom – focal length of camera lens is smoothly changed. 
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Figure 2.1.  Basic cinematic camera moves. 

 

Though these basic camera moves can and often are used by themselves, they can just as easily be 

combined either in sequence (e.g. dolly out then track right) or in unison (e.g. the cliché 

Hollywood ending where the camera pulls back and “flies” up about 35 feet is composed of a 

vertical crane, a dolly and tilt move, all occurring at the same time).  A common type of camera 

move not listed above is the follow shot where the camera is hand-held and follows the action 

(usually with the help of a Steadicam to reduce camera shake and for remote focus and exposure 

control by assistants).  Another common camera “move”, the rack focus uses rapid changes in 
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camera lens focus to bring attention to certain subjects.  Since the camera itself does not move 

(only glass elements within the lens), this type of shot is more correctly referred to as an optical 

move. 

Some camera moves are rarely used in film and television but ubiquitous in 3D viewing.  For 

example, a camera tumble, which refers to orbiting the camera around a central point in any 

direction as if sliding it along the surface of a sphere, is the primary camera movement used in 

almost every 3D viewing application.  It is a natural way to inspect the surface of an object, and 

works very well with a pointing device such as a mouse since it is a 2-dimensional operation. 

2.2 Turntables 

The concept of turntables has been used extensively in the context of design visualization for 

both physical and virtual models.  The term turntable refers to the technique of having the user 

rotate the object in front of the camera much like as if it was placed on a record player and spun.  

This is in contrast to the standard technique of orbiting the camera around the object.  When the 

model being examined is a blob-like object like a car or a person or household appliance, the 

turntable technique actually works very well – the experience is similar to examining an object 

held in ones hand.  Turntables are thus typically most useful when evaluating the form of a single 

object.  The technique is however not well suited for examining more complex objects, groups of 

objects, landscapes, interiors or any scene with more than one subject.  With such scenes, the 

object-held-in-hand metaphor breaks down.  In addition, the turntable metaphor is too restrictive, 

in that it may not be possible to view all the details of the scene since the camera cannot take on 

an arbitrary position and orientation.  More fundamentally, the turntable metaphor breaks 

Newton’s law of relative motion, which can be easily observed by comparing the reflections 

produced while examining a virtual model containing static lights with and without the turntable 

technique. 
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2.3 Viewing Image - vs. Geometry-based Models 

In the context of viewing computer generated imagery, there are two distinct “families” of 

approaches.  The traditional approach is to render an image from a 3D representation of a scene.  

The 3D geometry data can come from any number of sources including CAD modeling tools or 

3D digitizing tools.  The 3D representations are commonly in the form of polygona l meshes or 

parametric “patches”, such as nurbs surfaces.  A 3D model of a car is shown in Figure 2.2, where 

the underlying geometry is clearly visible in the wireframe view.  3D models are also typically 

enhanced by applying texture maps.  In contrast with viewing geometry-based models, image-

based viewing techniques use a collection of stored images to generate novel views of the scene.  

There exist several varieties of image-based viewing techniques typically characterized as non-

physically based image mapping, mosaicking, interpolation from dense samples, and 

geometrically-valid pixel reprojection.  Each technique uses only source images to produce novel 

views.  For a review of image-based viewing techniques see Kang (1997). 

 
Figure 2.2.  Wireframe (left) and shaded (right) views of a 3D model of a car. 

Geometry-based and image-based viewing differ in the types of camera moves they support and 

in their support for dynamic lighting and moving scene objects.  The following table shows a 

simple comparison between these two approaches in the context of moving or manipulating the 

camera, the lights in the scene or the objects in the scene. 
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 Geometry-based Image-based 

Main difference Arbitrary views computed on 
demand from 3D geometry. 

Views are precomputed or 
determined from nearby, 
precomputed views. 

Camera No difficulties in computing an 
unconstrained, user controlled 
camera.  Arbitrary views can be 
generated at equal cost. 

Restrictive.  In the best case, any 
novel view requires a sample 
image from a similar point of view.  
In the worst case the camera 
movement is highly constrained 
(e.g. QTVR). 

Lighting No difficulties in computing 
multiple moving and changing 
light sources.  Highly realistic 
lighting is however 
computationally expensive and is 
typically not feasible in a real-
time rendering context. 

Essentially impossible to support 
dynamic lighting, especially when 
using photographs.  Potential of 
higher quality and even 
photorealistic lighting. 

Object No difficulties in handling a 
reasonable number of moving 
objects.  Object geometry can 
also be animated.  Increased 
complexity in object geometry or 
movements increases the 
computational cost of rendering. 

Can have animated sequences 
associated with a viewpoint (e.g. 
QTVR) but impossible to support 
unconstrained arbitrary movement 
of scene objects. 

 

Geometry-based and image-based viewing differ fundamentally in the relative trade-offs between 

speed of rendering, photorealism of output images, compactness of representation (size of input 

dataset), types of interactions afforded and the relative difficulty of doing so.   

The strengths of image-based viewing lie primarily in the quality of the renderings.  Indeed the 

quality of image-based renderings is directly related to the source images used.  By using actual 

photographs, photorealism is easily achievable.  On the other hand, the quality of geometry-based 

renderings is dependant on the quality of the 3D geometry, the textures applied to the geometry, 
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the rendering algorithms used and more.  Achieving photorealism is generally difficult using 

geometry-based rendering since it means acquiring and using highly complex 3D models, 

photorealistic texture maps and expensive rendering algorithms (to support diffuse, reflected 

lighting, depth-of-field, motion blur, etc…). 

Geometry-based viewing makes use of the traditional graphics rendering pipeline. The cost of 

rendering a view therefore is dependant on the complexity of the scene and the type of rendering 

algorithms and special effects used.  High speed rendering is possible however since the 

geometry rendering pipeline is commonly implemented in hardware in today’s personal 

computers.  In contrast, image-based rendering speed is independent of scene complexity.  The 

cost of rendering is not small however and no specialized hardware acceleration exists to help. 

The amount of data required to describe a scene is generally greater with image-based viewing.  

This may not be strictly true for all scenes in all cases, but geometry data is considered to be a 

more compact representation of a scene than a collection of images.  The more the viewpoint is 

allowed to vary in image-based viewing, the more data will be required, whereas the amount of 

data describing the scene is independent of the number of constraints on the camera. 

Finally, as summarized in the previous table , image-based and geometry-based viewing differ in 

the types of interactions supported.  Geometry-based rendering can handle arbitrary viewpoints 

with ease, since the conventional rendering pipeline places no limitations on the virtual camera.  

Furthermore, it is trivial to support such user interactions with the scene as opening a door or 

changing the colour of an object since the virtual objects which compose the scene are 

representations of actual objects.  This is in contrast to the situation with image-based viewing 

where the scene data consists of a collection of images and there is no specific correspondence 

between scene objects and data.  While it is possible in theory to support, for example, the 

changing of an object’s color, this would be a highly involved process which would include 
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identifying the object in each source image (to be able to detect a user interaction with the object) 

and storing multiple copies of the image, each with the object drawn in a different color.  Given 

the fact that the images used in image-based viewing are typically photographs, this process 

would be even more difficult.   Thus geometry-based viewing supports a much wider range of 

user interactions and supports them with much greater ease than does image-based viewing. 

2.4 Camera Moves and Interaction 

So far we have discussed camera moves and dynamic scenes, exploring how these relate to the 

internal representation of the scene (geometry-based vs. image-based).  The following section 

describes how these camera moves and scene interactions take place – that is the ways in which a 

user can manipulate the camera and objects in the scene.  Examples will be drawn from existing 

3D viewing applications. 

At the highest level, we can distinguish between graphical and keyboard interaction methods.  

Keyboard interaction is typically performed by using the arrow keys and additional command 

keys, and is therefore limited in the number of controllable degrees of freedom (DOF).  For many 

manipulations, 2 or 3 DOF is enough.  For example, moving an object relative to some plane in 

virtual space (e.g. the ground plane, or the image plane) is easily accomplished with keyboard 

arrow controls.  Another example is camera manipulation in QTVR.  Since the camera is 

constrained to a 2D tumble + zoom1 in object-centric mode and pan + zoom in panorama mode, 

the combination of keyboard arrows and two extra keys (Shift and Control) provide all the 

necessary degrees of freedom.  Interaction with the keyboard quickly breaks down with anything 

beyond such simple manipulations, and the number of keys the user must think about and 

remember becomes unwieldy.  In most image-based viewing systems, this is not an issue since 
                                                 

1 The QTVR zoom is not equivalent to a true optical zoom (changing focal length of camera lens).  In QTVR, ‘zoom’ enlarges and 
reduces the image by scaling the image pixels.  In real cameras, the depth-of-field (range of distances at which objects stay in focus) 
also changes with the focal length for a given lens aperture. 
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these viewers almost always place substantial constraints on the types of camera or object 

manipulation they allow.  This is not the case however in the majority of geometry-based viewers 

which naturally allow more flexibility in camera and object manipulations (because they can!) 

and thus carry the burden of facilitating control of more degrees of freedom than can be 

reasonably handled with the keyboard alone.  The fbx Quicktime extensions from Kaydara, which 

transform Quicktime from an image-based viewer into a 3D geometry-based viewer, illustrate 

this breakdown perfectly.  The fbx extensions use no less than fifteen keyboard command or 

modifier keys (e.g. grid on/off – G, Lights on/off – L) in addition to the arrow keys.  The 

keyboard interaction is at best awkward and clumsy.  More information about the fbx Quicktime 

extension can be found on the WWW at www.kaydara.com/products/fbx_for_QuickTime/. 

The limitations of keyboard control make graphical control methods the popular choice in the 

vast majority of viewer implementations.  Indeed, we have not been able to identify any viewer, 

image-based or otherwise, which did not make use of graphical controls in some way (for 

example as an alternative to the keyboard controls).  We distinguish three classes of graphical 

interaction methods: invisible widgets or indirect controls, manipulators or in-scene controls, and 

visible widgets or on-screen controls. 

Indirect control methods are so named because they lack any direct interaction with a visible 

widget or object.  An example of indirect control which is used in many commercial 3D modeling 

and animation software is viewpoint (camera) manipulation using the mouse and modifiers (keys, 

menu items, physical buttons or graphical buttons).  To tumble the active view in MAYA, for 

example, the user simply holds down the ALT key while clicking and dragging the mouse in the 

view.  Indirect control is perhaps the best suited method for the user to manipulate their 

viewpoint.  On the other hand, on-screen control methods are those where the user interacts 

directly with a visible widget.  A typical example is a control panel with buttons sliders and other 

widgets that are linked to manipulations of the scene.  In-scene controls (often referred to as 
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manipulators) make use of visual in-scene widgets (superimposed over the object to be 

manipulated) to assist with and possibly constrain the manipulation.  This differs from on-screen 

control panel type controls in that the widget is actually in the 3D scene.  MAYA makes 

extensive use of manipulators for object transformation (translation, rotation and scale).  When an 

object is selected and a transformation tool is active, a manipulator corresponding to the 

transformation type is shown superimposed over the object.  The translation manipulator, for 

example, shows three perpendicular axes and a central box.  Clicking the mouse over one of the 

axes and dragging causes the object to be translated along that axis.  Translation in multiple 

dimensions is possible by dragging the central box of the manipulator.  See Figure 2.3 below for 

screenshots of MAYA showing the translation, rotation and scale manipulators.  For another 

example of in-scene controls, the virtual trackball, see Chen (1988). 

 
Figure 2.3.  MAYA manipulators. 

In this chapter we have looked at the kinds of camera movements used in cinematography and 

cross over to 3D viewing.  We also discussed the differences in the forms of input data used in 3D 

viewing, geometry and images and explored the advantages and disadvantages of each.  Finally 

we covered how the user interaction takes place, in the context of 3D viewing on a computer.  

These topics were covered to facilitate the review of the current state-of-the-art in 3D viewing 

which we cover in the following chapter, and to lay the groundwork for a proper comparison of 

the current state-of-the-art to StyleCam. 
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Chapter 3.    Related Work 

There are numerous interactive 3D authoring and viewing systems in existence today.  In the 

following we will list the features of widely available, leading interactive 3D systems and 

comment on why these systems, though highly sophisticated, do not solve the problem we have 

described.  We will continue by taking a look at current research on the more general problem of 

camera control and see if the techniques described in that research provide a suitable solution to 

the problem. 

Viewpoint Corporation produces a suite of tools for the creation and viewing of interactive 3D 

content (Viewpoint Products).  Experiences created with Viewpoint’s tools are of reasonably high 

visual fidelity, but support only simple, constrained camera controls, specifically 

tumble/pan/zoom and bookmarked views.  The tumble/pan/zoom camera control technique 

employed in the Viewpoint system is slightly better than the standard in that it has author-defined 

maximal and minimal extents, with which an author can restrict the camera movement within 

certain limits.  This can perhaps reduce the frequency of user errors in controlling the camera.  

Bookmarked views allow the author to define a set of viewpoints which will be accessible to the 

user via some UI control (e.g. a button).  When a user selects a bookmarked view, the camera is 

smoothly animated from its current position/orientation to the bookmarked view’s 
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position/orientation.  The animation is automatic, determined by the system, and can presumably 

give undesirable results in many cases since the author has no real control over the camera’s path 

through space.  The Viewpoint system also supports the animation of scene elements, a very nice 

feature that can be used to affect changes in the scene based on certain actions on the part of the 

user.  For example, an animated sequence explaining a vehicle’s suspension can be played when a 

UI tab labelled “suspension” is clicked or if the user clicks on or near the vehicle’s suspension 

assembly.  It is of interest to note that these animations can include camera animations that move 

the user’s view through the scene. 

Cycore’s Cult3D product line is very similar to the Viewpoint products described above (Cycore 

Cult3D).  Cult3D boasts reasonably high visual fidelity by using geometry-based rendering and 

antialiasing techniques.  With respect to the interaction methods, authored bookmarked views are 

supported in addition to the standard tumble/pan/zoom controls.  Scene objects, and even the 

camera itself, can be animated by the author.  These animations are triggered by on screen UI 

widgets. 

VRML is an open standard for interactive 3D on the web (VRML Specif ication).  The VRML 

specification does not support any type of author-influenced user interaction other than 

bookmarked views.  Since VRML is an open specification, a large number of tools exist for 

creating and viewing VRML worlds.  We will focus on the capabilities of one of the most popular 

VRML viewers, Blaxxun Interactive’s Contact (Blaxxun Contact).  Blaxxun Contact supports 

several navigation modes.  In “walk” mode, horizontal displacement of the mouse causes left and 

right panning while vertical mouse displacement cause the view to dolly in and out.  Horizontal 

mouse movement in “slide” mode causes the virtual camera to move perpendicular to its gaze 

vector and up vector.  Vertical mouse movement causes the virtual camera to move up and down 

along its up vector.  “Examine” mode provides 2D tumble around a fixed point of interest and 

“Pan” mode provides 2D panning mapped to the two mouse axes.  Contact also implements a 
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mode called “Jump” which will respond to the user’s mouse clicks by focusing in on the closest 

point in the scene under the cursor.  Other features of Contact include simple physics 

approximations of collisions and gravity.  Despite the wealth of features and navigation modes 

available in Contact, there is no mechanism for the author of a VRML world to introduce style by 

influencing the viewpoint and the pacing felt by the user.  As such, experiencing VRML worlds, 

even with a state -of-the-art VRML viewer, is far from compelling. 

The most advanced system for creating and viewing interactive 3D content today is probably the 

software suite known as Virtools.  Interactive 3D experiences are authored with Virtools Dev, 

published using Virtools Behavior Server and experienced using the Virtools Player (Virtools 

Products).  Virtools Dev is unique in that authors can introduce rich dynamic behaviour to the 

virtual world without any scripting, simply by assigning pre-defined behaviours to scene 

elements.  Using the Virtools SDK, new behaviours can also be implemented.  Virtools exposes 

so much functionality that fairly sophisticated games can be created and played using this system.  

Given this rich functionality, it is likely that it is possible to author experiences with significant 

control over the viewpoint and pacing as well as content and lighting with Virtools Dev and the 

SDK.  The drawback is that such experiences will be very difficult to author well since in 

addition to the usual authoring difficulties, the author must reckon with programming behaviours.  

Indeed there is no clear conceptual model of how an author should constrain the viewpoint and 

how various constraints will relate to each other.  Moreover, there is no established user 

interaction metaphor that the author can design his or her experiences to work with.  

Nevertheless, experiences created with Virtools Dev are better and more impressive than any 

experiences we were able to find authored using other systems.  Also, we found that Virtools was 

the only product available that supported author influenced viewing at all.  Given this fact, we 

consider Virtools experiences to be the state -of-the-art in interactive 3D authoring and viewing. 
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A large amount of academic research has been done on the general topics of 3D scene navigation 

and camera control techniques.  The following section will explore the techniques developed in 

past research to determine how they deal with author control versus user control and what level of 

support, if at all, these techniques have for author control over what the user sees and when they 

see it. 

Perhaps the most ubiquitous mouse-based virtual camera control metaphor, the cinematic camera 

metaphor, enables users to tumble, track and dolly the viewpoint with a regular mouse and 

modifier keys.  This metaphor is used as the primary view control in most 3D modeling and 

animation software packages and works very well in the majority of cases.  Various other 

metaphors have been explored by researchers, including orbiting and flying (Tan et al., 2001), 

through-the-lens control (Gliecher & Witkin, 1992), points and areas of interests (Jul & Furnas, 

1998), using constraints (Mackinlay et al., 1990), drawing a path (Igarashi et al., 1998), two-

handed techniques (Balakrishnan & Kurtenbach, 1999; Zeleznik et al., 1997), and combinations 

of techniques (Steed, 1997; Zeleznik & Forsberg, 1999). 

Tan et al. (2001) integrate speed-coupled flying and object-centric orbiting to allow the user to 

not only alternate between local views or “walking around” and global overviews of the world, 

but to also orbit around a central object of interest in order to examine it.  The intention of the 

user is assumed when they first start to drag the mouse.  If the mouse drag begins on an object, 

the system assumes the user is trying to examine the object, whereas if the drag begins in empty 

space (i.e. the sky or the ground), the system assumes the user wants to freely navigate.  When in  

navigation mode, the user is given standard controls to navigate.  An interesting aspect of this 

scheme is that the height of the camera and its tilt are determined by the speed of navigation so 

that the faster the user’s view is moving, the more the user experiences a zoomed-out or overview 

effect.  The authors showed that that this technique was generally superior in performance and 

preferred by users in comparison to several other techniques. 
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Gleicher and Witkin (1992) propose a series of camera controls that let a user control the virtual 

camera by manipulating and applying constraints to features in the image as seen through the 

virtual camera’s lens.  For example, points on objects in the scene can be pinned to a certain 

screen location, constraining the virtual camera to always keep those two 3D points at the same 

location on the screen.  Image features can also be used as virtual camera controllers, for example 

dragging a point in the scene causing the camera to move such that this point always stays under 

the cursor.  Multiple constraints and controls can be used simultaneously to operate the virtual 

camera. 

Mackinlay et al. (1990) describe a technique that supports rapid and controlled movement of the 

virtual camera through space.  The user simply chooses a target “point of interest” (POI) on an 

object in the scene, and the virtual camera moves towards this target logarithmically in distance to 

target.  The POI is dynamic and is recalculated every frame, after which the virtual camera is 

adjusted to face the POI.  Due of the logarithmic movement of the viewpoint, rapid motion is 

achieved when the distance to the target object is large and controlled movement is achieved as 

this distance shrinks. 

Igarashi et al. (1998) introduce a technique for navigating virtual worlds that uses user-drawn 

strokes to control the virtual camera.  A stroke is projected onto the ground surface in the scene 

and used as a path for the virtual camera.  The stroke can be updated at any time by drawing a 

new stroke.  The authors showed that the technique was actually slightly slower on average than 

other techniques such as “driving” where the user controls the camera with keyboard arrow keys, 

and “flying” where the user clicks on a point on the ground causing the virtual camera to fly to 

that location.  The same study also showed, however, that the drawing technique is preferred by 

most users. 
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Some research has also attempted to categorize navigation metaphors in various ways.  Bowman 

et. al. (1997, 1999) present action- or motor-based taxonomies and evaluations of various 

schemes in the context of virtual immersive environment.  Tan et al. (2001) propose an 

alternative, task-based navigation metaphor taxonomy.  Other techniques involve automatic 

framing of the areas of interest as typically found in game console based adventure games which 

use a ”chase airplane” metaphor for a third person perspective. Systems that utilize higher degree-

of-freedom input devices offer additional control and alternative metaphors have been 

investigated, including flying (Chapman & Ware, 1992; Ware & Fleet, 1997), eyeball-in-hand 

(Ware & Osborne, 1990), and worlds in miniature (Stoakley et al., 1995). 

The major difference between this body of prior research and our work is that we attempt to give 

the author substantially more influence over the types of views and transitions between them as 

the user navigates in the virtual space.  Indeed none of the previously mentioned camera control 

metaphors support author designed, substantial viewpoint and pacing influence, and hence an 

author is scarcely able to introduce stylistic elements to the experience in the traditional, well-

established ways. 

Beyond techniques for navigating the scene, extra information can also be provided to aid 

navigation. These include global maps in addition to local views (Elvins et al, 1998; Fukatsu et 

al., 1998), and various landmarks (Darken & Sibert, 1996; Vinson, 1999). Others have 

investigated integrating global and local views, using various distorted spaces including “fisheye” 

views (Carpendale & Montagnese, 2001; Furnas, 1986).  

Approaches that give the author more influence include guided tours where camera paths are pre-

specified for the end user to travel along. Galyean (1995) proposes a “river analogy” where a 

user, on a metaphorical boat, can deviate from the guided path, the river, by steering a conceptual 

“rudder”.  A great strength of this technique is that the metaphor is both very simple to grasp 
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conceptually and fairly powerful.  Since the boat flows continuously down the river with or 

without user input, the river metaphor guarantees an uninterrupted flow for the user.  The fact that 

the river is like a path in the scene with some varying width means that the author can design a 

path that gives visually pleasing shots of the virtual world.  The author also has control over the 

rate of flow of the river at any point along the river and can use this to influence the pacing of the 

experience. The virtual river can have multiple branches that can optionally rejoin, allowing for 

branching visual narratives, which could be more interesting to the user.  The river analogy is not 

without its drawbacks.  The types of experiences that can be authored using this metaphor are 

limited to ones that follow a branching path.  Also, the amount of author influence of the 

viewpoint is not as substantial as we would like to see.  Although the author can strictly 

determine the path the viewpoint will roughly follow, the viewing direction is only partially and 

vaguely influenced through parameters, such as spring force, boat speed and view direction force, 

which can be specified along the river.  It is not immediately clear as an author what viewpoints 

will be experienced as a user, a fact that could be too limiting for certain applications. 

Fundamental work by Hanson and Wernert (1997, 1999) proposes “virtual sidewalks” which are 

authored by constructing virtual surfaces and specifying gaze direction, vistas, and procedural 

events (e.g., fog and spotlights) along the sidewalk. Our system builds upon the guided tour and 

virtual sidewalk ideas but differs by providing authoring elements that enable a much more 

stylized experience. Specifically, we offer a means of presenting 3D, 2D, and temporal media 

experiences through a simple, unified, singular user interaction technique that supports both 

spatial and temporal navigation. While the system presented by Hanson and Wernert focuses on 

constrained navigation, our system addresses authored interactive experiences. Although 

StyleCam’s camera surfaces borrow heavily from Hanson and Wernert’s “constraint surfaces”, 

they differ on several levels. In Hanson and Wernert’s system, one large, often complex 

constraint surface made up of one or more rectangular patches is used to constrain the camera. 
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Camera parameters are defined at key points along this surface to influence the view. Although 

the constraint surface is most often used to control camera position (i.e. map 2D controller to 3D 

spatial position), it can be used to control other camera parameters (e.g. view direction). In 

addition to deriving camera parameters from the constraint surface and a set of predefined key 

values, camera parameters can be derived from other sources such as scene interest points or 

terrain gradients.  In contrast, our system uses multiple simple camera surfaces to constrain the 

camera position only, and only one money-shot (equivalent to Hanson and Wernert’s “constant 

key vertices”) influences the other camera parameters at any given time. 

Robotic planning algorithms have been used to assist or automatically create a guided tour of a 

3D scene, in some case resulting in specific behaviours trying to satisfy goals and constraints 

(Drucker et al., 1992; Drucker & Zeltzer, 1994). Individual camera framing of a scene has been 

used to assist in viewing or manipulation tasks (Phillips et al., 1992).  Cinematic principles such 

as keeping the virtual actors visible in the scene; or following the lead actor can be applied for the 

camera to automatically frame the scene (He et al., 1996). Yet another system (Bares et al., 2000) 

allows authors to define storyboard frames and the system defines a set of virtual cameras in the 

3D scene to support the visual composition. This previous work assists in the authoring aspects 

by ceding some control to the system. Our work too involves some automatic system control, but 

we emphasize author control. 

Image based virtual reality environments such as QuicktimeVR (Chen, 1995) utilize camera 

panning and zooming and allow users to move to defined vista points. The driving metaphor has 

also been used for navigating interactive video, as seen in the Movie -Maps system (Lippman, 

1980). More recently, the Steerable Media project (Marrin et al., 2001) for interactive television 

aims to retain the visual aesthetic of existing television but increase the level of user interactivity. 

The user is given the ability to control the content progression by seamlessly integrating video 

with augmented 2D and 3D graphics. While our goals are similar in that we hope to enhance the 
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aesthetics of the visual experience, we differ in that our dominant media type is 3D graphics with 

augmented temporal media (i.e. animations and visual effects) and traditional 2D media (i.e. 

video, still images). 
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Chapter 4.    Conceptual Model 

In this chapter, we describe the concepts of StyleCam that make the authoring and viewing of 

interactive, stylized viewing experiences possible.  The core of this innovation is in establishing a 

flexible and easily understood conceptual model for both the author and the end-user.  Designing 

and implementing a usable and highly functional authoring GUI was not a goal in the 

development of StyleCam.  We will therefore continue with a description of the StyleCam 

conceptual model and how it empowers an author to create good interactive 3D experiences. 

StyleCam is a conceptual model that allows an author to build interactive experiences by being 

flexible enough to be highly expressive, yet simple enough so that the experience the user will get 

is predictable and true to the author’s intentions.  StyleCam also defines how the user will interact 

with the system, and how the system will interpret the actions of the user to move the camera. 

In order to provide author control or influence over viewpoints and pacing, mechanisms must 

exist for an author to express the viewpoints and the types of pacing they are interested in.  These 

are: 

1. Camera surfaces – an author-created surface used to constrain the users’ movement of the 

viewpoint. 
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2. Animation clips – an author-created set of visual sequences and effects whose playback may 

be controlled by the user. These animation clips can include:  

• sophisticated camera movements, 

• Slates – 2D media such as images, movies, documents, or web pages, 

• visual effects such as fades, wipes, and edits, 

• animation of elements in the scene. 

3. Unified UI technique – The user utilizes a single method of interaction (dragging) to control 

the viewpoint, animation clips, and the transitions between camera surfaces. 

In the following sections, each of these components are described in more detail. 

4.1 Camera Surfaces 

In the motion picture industry a money-shot is a shot with a particular viewpoint that a director 

has deemed “important” in portraying a story or in setting the visual style of a movie. Similarly, 

in advertising, money-shots are those which are the most effective in conveying the intended 

message. We borrow these concepts of a money-shot for our StyleCam system. Our money-shots 

are viewpoints that an author can use to broadly determine what a user will see.  Viewpoint 

parameters include position, orientation (view direction), lens length (zoom) and others. 
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Figure 4.1. Camera surfaces. The active camera is at the money-shot viewpoint on the first camera surface. 

 

Further, we use the concept of a camera surface as introduced by Hanson and Wernert (1997, 

1999). When on a camera surface, the virtual camera’s spatial movement is constrained to that 

surface. Further, each camera surface is defined such that they incorporate a single money-shot. 

Figure 4.1 illustrates the concept. 

Camera surfaces can be used for various purposes. A small camera surface can be thought of as 

an enhanced money-shot where the user is allowed to move their viewpoint a bit in order to get a 

sense of the 3-dimensionality of what they are looking at.  Alternatively, the shape of the surface 

could be used to provide some dramatic camera movements, for example, sweeping across the 

front grill of a car. The key idea is that camera surfaces allow authors to conceptualize, visualize, 

and express particular ranges of viewpoints they deem important. 

Intrinsic in our authored interactions is the notion that multiple camera surfaces can be used to 

capture multiple money-shots. Thus authors have the ability to influence a user’s viewpoint 

broadly, by adding different camera surfaces, or locally by adjusting the shape of a camera 

surface to allow a user to navigate through a range of viewpoints which are similar to a single 
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particular money-shot. For example, as shown in Figure 4.1, camera surfaces at the front and rear 

of the car provide two authored viewpoints of these parts of the car in which a user can “move 

around a bit” to get a better sense of the shape of the front grille and rear tail design.  

The rate at which a user moves around on a camera surface (Control-Display gain) can 

dramatically affect the style of the experience. In order to allow an author some control over 

visual pacing, we provide the author with the ability to control the rate at which dragging the 

mouse changes the camera position as it moves across a camera surface. The intention is that 

increasing/decreasing this gain ratio results in slower/faster camera movement and this will 

influence how fast a user moves in the scene, which contributes to a sense of pacing and visual 

style. For example, if small mouse movements cause large changes in viewpoint this may produce 

a feeling of fast action while large mouse movement and slow changes in movement produce a 

slow, flowing quality. Figure 4.2 illustrates an example of variable control-display gain, where 

the gain increases as the camera gets closer to the right edge of the camera surface. 

 
Figure 4.2. Variable control-display gain on a camera surface. 
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4.2 Animation Clips 

To support transitions between two camera surfaces, we use animation clips as illustrated in 

Figure 4.3. An animation clip can be thought of as a “path” between the edges of camera surfaces. 

When a user navigates to the edge of a camera surface, this triggers an animation. When the 

animation ends, they resume navigating at the destination camera surface. One obvious type of 

animation between the camera surfaces would simply be an automatic interpolation of the camera 

moving from its start location on the first camera surface to its end location on the second camera 

surface (Figure 4.3a). This is similar to what systems such as VRML do. While our system 

supports these automatic interpolated animations, we also allow for authored, stylized, 

animations. These authored animations can be any visual sequence and pacing, and are therefore 

opportunities for introducing visual style. For example, in transitioning from one side of the car to 

the other, the author may create a stylized camera animation which pans across the front of the 

car, while closing in on a styling detail like a front grille emblem (Figure 4.3b).  

The generality of using animation clips allows the author the stylistic freedom of completely 

abandoning the camera-movement metaphor for transitions between surfaces and expressing 

other types of visual sequences. Thus animation clips are effective mechanisms for introducing 

slates — 2D visuals which are not part of the 3D scene but are momentarily placed in from of the 

viewing camera as it moves from one camera surface to another (Figure 4.3c). For example, 

moving from a view of the front of the car to the back of the car may be accomplished using a 2D 

image showing the name of the car. This mechanism allows the use of visual elements commonly 

found in advertising such as real action video clips and rich 2D imagery. In the computer realm, 

slates may also contain elements such as documents or web pages. 
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Figure 4.3. Three example animated transitions between camera surfaces. (a) automatic transition,               

(b) authored stylized transition, (c) slate transition. 

 

The use of animation clips also allows for typical visual transitions effects such as cross fades, 

wipes etc.  

In addition to using animation clips for transitions between camera surfaces, StyleCam also 

supports the animation of elements in the 3D scene. These scene element animations can occur 

separately or concurrently with transition animations. For example, while the animation clip for 

the visual transition may have the camera sweeping down the side of the car, an auxiliary 

animation may open the trunk to reveal cargo space.  

The animation of scene elements can also be used to affect extremely broad changes. For 

example, entire scene transitions (similar to level changes in video games) may occur when a user 

hits the edge of particular camera surface. 

At the author’s discretion, temporal control of animation clips can either be under user control or 

uninterruptible.  The ability to designate an animation clip as uninterruptible  is useful for many 
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reasons.  It shifts the balance of control in favour of the author.  An uninterruptible animation clip 

is essentially a movie sequence and therefore offers the ultimate in author control.  Furthermore, 

an uninterruptible clip may be preferred when the distance covered is small or the duration very 

short, in order to ensure that no important features are missed.  Finally certain types of animation 

clips are required to be uninterruptible to deliver the intended message.  For example an 

animation sequence involving multiple frames of text may only be intelligible if played in the 

forward direction. 

Overall, in terms of visual expression, these varying types of animation clips allow an author to 

provide rich visual experiences and therefore significantly influence the pacing and style of a 

user’s interaction. 

4.3 Unified User Interaction Technique 

While animation clips are effective for providing a means to move between camera surfaces and 

introduce visual styling elements, they also highlight the fundamental issue of arbitrating between 

user control and system control. At the heart of our system are two distinct types of behaviour : 1) 

user control of the viewpoint, and 2) playback of animation clips. In other systems these two 

types of behaviour  are treated as distinct interactions. Specifically, the user must stop dragging 

the camera viewpoint, then click on something in the interface to trigger the animation, dividing 

their attention and interrupting the visual flow. In our system we wanted to use animations as a 

seamless way of facilitating movement between camera surfaces. Thus we needed a mechanism 

for engaging these animations that did not require an explicit mouse click to trigger animation. 

Ideally we wanted to leave the user with the impression that they “dragged” from one camera 

surface to another even though the transition between the surfaces was implemented as an 

authored animation.  
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These two behaviours are fundamentally different in that viewpoint control is spatial navigation 

and animation control is temporal navigation. From a user interaction standpoint, spatial 

behaviour can be thought of as “dragging the camera” while temporal control is “dragging a time 

slider” or “scrubbing”. Given this we required an interaction model which allowed these two 

types of drags to be combined together in a way that was well defined, controllable, and 

corresponded to user’s expectations.  

Figure 4.4, which uses the finite-state-machine model to describe interaction as introduced by 

Buxton (1990) and Newman (1968), shows the interaction model we developed. The key feature 

of this model is the ability to transition back and forth from spatial to temporal control during a 

contiguous drag. As a user drags the camera across a camera surface (State 1, Spatial Navigation) 

and hits the edge of the surface, a transition is made to dragging an invisible time slider (State 2, 

Temporal Navigation). As the user continues to drag, the drag controls the location in the 

animation clip, assuming that the author has specified the clip to be under user control. Upon 

reaching the end of the animation, a transition is made back to dragging the camera, however, on 

a different, destination camera surface (State 1). 
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Figure 4.4. StyleCam interaction model. 

 

The interaction model also handles a variety of reasonable variations on this type of dragging 

behaviour. A user may stop moving when dragging an animation clip, thus pausing the animation. 

If, however, when in State 2 the user releases the mouse button during a drag, automatic playback 

is invoked to carry the user to the next camera surface (State 3). Should the user press the mouse 

button during this automatic playback, playback is stopped and temporal control by the user is 

resumed (return to State 2). We found in practice that this interaction design enhanced the user’s 

feeling of being in control throughout the entire experience. 
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Chapter 5.    Prototypes 

In this chapter, we describe the previous incarnations of StyleCam to illustrate the iterative 

process that was used in the development of StyleCam.  Furthermore, describing earlier StyleCam 

prototypes will demonstrate why certain features or concepts were added.  For example, at first 

glance, it may appear that the incorporation of animation clips into StyleCam unnecessarily 

complicates its authoring and use. After all, without animated transitions, we would not have had 

to develop an interaction technique that blended between spatial and temporal control. Indeed, 

when we first began our research, our hope was to create a system that simply involved spatial 

control of a constrained camera.  

The idea of StyleCam was sparked by the observation that tumbling the camera is equivalent to 

sliding the camera along the surface of a sphere surrounding a central object of interest.  The first 

StyleCam prototype extended this concept to sliding the camera along an arbitrary closed surface 

surrounding the 3D object of interest. The camera view direction was constrained to remain 

normal to this single camera surface at all times.  While this gives the author more control over 

what the users sees than using a simple unconstrained camera, we found that it was difficult to 

author a single camera surface that encompassed all the desirable viewpoints and interesting 

transitions between those viewpoints.  For example, with such a scheme, it is impossible create a 
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camera surface that allows the camera to move along a straight path while pointing in the 

direction of movement.  The camera is always pointing in the direction of the surface normal 

which is, by definition, perpendicular to the surface itself (the surface defines the direction of 

movement).  The concept of a camera surface was nevertheless not abandoned since a surface is 

such a natural way for an author to describe a constrained set of possible camera positions in 

space.  It is trivial to visualize and predict the range of positions in space that a surface represents.  

Furthermore, a surface provides a simple mapping between two-dimensional mouse movements 

and a position on the surface. 

 
Figure 5.1.  Car model surrounded by a single camera surface. 

In order to guarantee desirable viewpoints over all parts of the surface, we introduced the concept 

of authored money-shots that were placed on the single camera surface. Each money-shot defined 

the camera parameters at a specific point on the camera surface. For points on the camera surface 

between money-shots, the camera surface itself defined the camera position, while other camera 

parameters were determined based on a weighted average of the surrounding money-shots.  This 

approach removed the limitation of having the camera always point perpendicular to its direction 

of movement, yet it was still difficult to for the author to predict what the user would see when 
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between money-shots.  In other words, while money-shots worked well, the transitions between 

them worked poorly.  The problem was compounded by the fact that averaging camera 

parameters between money-shots necessarily implies that the addition of a money-shot will 

change the computed average camera parameters at all non money-shot locations on the surface.  

This second prototype was only marginally more successful than the first. 

 
Figure 5.2.  Car model surrounded by a single camera surface embedded with four money-shots. 

 

The third prototype was developed after re-examining the basic issues.  What is StyleCam trying 

to accomplish?  The simple answer is interactive 3D experiences as compelling as television 

commercials.  The observation was made that in a car commercial, you don’t see every single 

detail on the car, but rather you see a carefully selected set of details from very specific 

viewpoints.  These viewpoints are captured by the concept of money-shots, but money-shots 

alone offer no room for interactivity.  It is the camera surface that adds the interactive component.  

To address the problem of unsatisfactory transitions, we first replaced the concept of a single 

global camera surface with separate local camera surfaces for each money-shot. Then, to define 
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transitions between these local camera surfaces, we introduced the idea of animating the camera 

with the use of the three types of animation clips described earlier.  The user’s viewpoint was 

now being influenced by exactly one money shot at any given time, giving more predictable, and 

therefore easier to author experiences.  Each money-shot and camera surface combination is self 

contained, with no interactions between adjacent or nearby money-shots, completely eliminating 

the problems we experienced of having unpredictable results when averaging. 

In the third prototype of StyleCam, all animated transitions whether automatic, authored or slate-

style, were uninterruptible.  Simply playing back the animation clips between camera surfaces, 

however, made users feel that they had completely lost control during this period.  To maintain 

the feeling of continuous control throughout, we developed our integrated spatial-temporal 

interaction technique which we described in detail in the previous chapter. 
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Chapter 6.    Example Experience 

6.1 StyleCam in Context 

In prior chapters, we discussed StyleCam in the context of the tools and concepts it replaces.  In 

this chapter, we discuss how StyleCam fits with the roles of the various people involved in the 

production and visualization process.  In chapter 4, we commented that the development of 

StyleCam was not meant to produce a useable tool but rather to materialize the concepts needed 

to produce compelling interactive experiences.  In doing so, we implied that a single tool would 

support all the roles in the production and visualization pipeline, except perhaps the viewer.  This 

is not a realistic picture.  The production of a StyleCam experience, in practice, would involve at 

least the roles of: 

Modeller Generates the 3D models. 

Animator Animates the 3D geometry (generates transitions and other 
animations). 

Director of photography Directs lighting, framing, pacing of experience. 

Graphic designer Designs and generates the 2D media (slates). 

Script writer Writes the “script” for the StyleCam experience. 



 43 

Art director Provides high-level direction of the StyleCam experience. 

Layout designer Designs the environment in which the StyleCam experience is to be 
presented. 

Market researcher Collects data from users, gives feedback to all other levels. 

Viewer Experiences the StyleCam experience. 

 

These roles are, in the most part supported by existing, well established tools.  For example a 

variety of sophisticated 3D modeling software packages (MAYA, 3DS Max, etc..) are in use 

today by thousands of professional 3D modellers.  Similarly, powerful graphic design tools have 

been around for many years.  StyleCam should play along with these tools, augmenting and 

complimenting their features to make the creation of StyleCam experiences simple.  To illustrate 

how this might be done, we step through an envisioned production pipeline for a StyleCam 

experience of an automobile.   

Marketing requests the development of a StyleCam experience for the company’s newest model.  

Marketing will likely have ideas about who the target audience is and how they want to market 

the car, which they communicate to the production team.  Given the input from the marketing 

team, the Art director and script writer will begin to work on the script and storyboard (likely 

with the help of a storyboard writer) for the experience - that is the sequence of money-shots and 

transitions including some rough framing.  The tools used so far may include no more than paper, 

pencils, tape and a large wall.   

Two-dimensional content creation is assigned to the graphic designer who uses, among other 

things, a digital camera, stock photos of the car and Photoshop.  Three-dimensional content is 

created in MAYA, likely adapted from existing 3D models of the car (e.g. reduce complexity to 

optimize rendering).  The director of photography “shoots” the StyleCam experience, working 

with a 3D lighting and rendering artist and an animator and using the script as a reference.  It is 
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during this step that the shots set up during the scripting and storyboarding are realized.  Here, a 

suite of plug-ins, geared to assist in StyleCam-specific activities is of great use.  For example, a 

camera surface tool could generate camera surfaces automatically based on the money-shot and 

instructions from the director (pacing, suitable camera movements. etc..).  A transition tool would 

automate the creation of the appropriate transition data based again on instructions from the 

director (e.g. pull-out while flying quickly from camera surface A to camera surface B.  A 

StyleCam preview tool would be used to “try out” the camera surfaces and transitions. 

If this were an example of the production of an animated commercial, the output at this point 

would be a large number of rendered frames which would be subsequently sent to post-

production for final composit ing.  In our example, the output is a StyleCam experience which will 

be played or viewed by a customer.  Specialized StyleCam tools are therefore necessary to get 

from several lit, framed (including camera surfaces, transitions and animations) MAYA scenes 

and a collection of 2D media to a workable StyleCam experience.  This includes the sequencing 

of money-shots and transitions, and the assignment of animations to events.  This step can be 

viewed as the editing phase of the experience. 

The layout designer is responsible for setting the environment in which the experience will be 

viewed.  This includes choosing the size and type of display device, the environmental styling, 

layout and lighting, and the input device among other things. 

Finally, the user views the StyleCam experience using specialized StyleCam viewing software 

running on a powerful computer with an advanced 3D graphics processor.  The StyleCam viewer 

plays the experience based on the input of the user.  In addition, the viewer collects data about the 

experience such as the paths the user chose and the time spent inspecting various features.  This 

data is collected by the Marketing team which feeds back to all the other players. 
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To summarize, StyleCam is right now a set of concepts and some rough prototype-quality tools to 

test these concepts.  The use of StyleCam in practice will required the development of a variety of 

specialized StyleCam tools to complement the existing tools used by professionals.  The 

combination of these new tools with the established tools will simplify the workflow of creating a 

StyleCam experience in practice. 

6.2 An Example Experience 

In the previous section we described an example authoring production pipeline for StyleCam 

experiences.  In this section, we illustrate how StyleCam operates by an example  from the point 

of view of a user.  This example is taken directly from an experience we authored using the 

prototype StyleCam authoring system, and tested in our informal user study of StyleCam.  The 

purpose of this example is to show, to the extent that it is possible with still images, what the user 

experiences.  The experience in this example is meant to be an advertisement for an automobile.  

It was authored to have a particular look and feel of being mysterious and elegant. 

Figure 6.1 illustrates the system components and how they react to user input, as well as screen 

shots of what the user actually sees.  The user starts by dragging on a camera surface (position A). 

The path A-B shows the camera being dragged on the surface (spatial navigation).  This camera 

surface allows the user to explore the front-end of the car including the grille and the headlights.  

This particular camera surface not only constrains the user’s viewpoint to specific angles of the 

car’s front-end, it also enforces a particular focal length for the shot, giving the evocative wide-

angle perspective. 

At B, the user reaches the edge of the camera surface and this launches an animation that will 

transition the user from B to E.  The zigzag path from B to D indicates that the user is scrubbing 

time on the animation (temporal navigation).  It should be noted that the transition from spatial to 

temporal navigation is completely seamless.  If the user never releases the mouse button during 
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the transition, they will likely not even notice that they have made the transition.  Position C 

simply illustrates an intermediate point in the animation that gets seen three times during the 

interaction. 

At position D, the user releases the mouse button, whereupon the system automatically completes 

playing back the remainder of the animation at the authored pacing.  The change from user 

control and system control is smoothly blended such that the playback does not abruptly change 

speeds to match the authored pacing.  Once the animation clip is complete, at position E, the user 

enters another camera surface and resumes spatial navigation of the camera.  It should be noted 

that the end-point of the animation clip is framed very precisely to give the shot shown.  By 

taking advantage of this, an author can end transition on important viewpoints for emphasis. 

The path E-F shows the movement of the camera along the camera surface corresponding to the 

input from the user. When the user’s camera exits this camera surface at position F, another 

animation is launched that will transition the user to position J.  Since the user releases the mouse 

button at position F, the animation from F to J is played back at the authored pacing.  Since this 

animation is a slate animation, the intermediate shots at positions G, H, and I along the path from 

F to J are of slates containing information on the car fading in and out as the camera pans over the 

top of the car. 

Though this example is only a fraction of the whole authored experience, it is representative of 

the level of author control made available by StyleCam, and the quality of the experiences that 

can be produced.  The net result of this StyleCam experience is a view of the car that is far more 

visually rich and influenced by an author who intends to convey a certain message, rather than 

using simple camera controls as is typical in current 3D viewers.  Indeed, simply tumbling around 

the same automobile model in MAYA was much less impressive. 
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Figure 6.1. Example StyleCam experience. 

Top: system components and their reaction to user input. Bottom: what the user sees. 
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Chapter 7.    Implementation 

In this chapter, we describe the implementation details of a prototype of the StyleCam concepts.  

Ultimately, for production use, a specialized authoring environment is desired, likely comprised 

of a suite of tools that includes existing 2D and 3D applications and new customized StyleCam 

specific tools.  For the purposes of our research, however, we built the StyleCam prototype using 

Alias’ MAYA 3D modeling and animation package as the foundation.  MAYA was used to 

author the 3D content to be experienced, the required camera surfaces, animation clips, and 

required associations between them.  A custom written plug-in allows the user to control their 

view of the 3D content based on their mouse input and the authored camera surfaces, animation 

clips, and associations within the MAYA environment. 

The following description of our implementation assumes some knowledge of MAYA, although 

we have endeavoured to be as general as possible without sacrificing accuracy. 

7.1 Authoring 

7.1.1 Money-Shots and Camera Surfaces 

Money-shots are created by defining a MAYA camera with a specific position, orientation, and 

other standard camera parameters. Then, a camera surface intersecting the position of the money-
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shot camera is defined by creating an appropriate non-trimmed NURBS surface within MAYA 

(see Figure 7.1).  This camera surface defines the set of possible user viewpoint positions in 

space. To include an optional camera look-at point, the author simply defines a point in 3D space 

(using a MAYA locator). If defined, the user’s view direction will always point to this look-at 

point (Figure 7.2a).  To obtain the effect of a constant view direction at all points on the camera 

surface, the look-at point can be placed at a great distance from the camera surface (Figure 7.2b). 

If no camera look-at point is defined, the user’s view will remain normal to the camera surface at 

all times (Figure 7.2c). Finally, to make these components easily locatable by the plug-in, they 

are grouped under a named MAYA node within its dependency graph as shown in Figure 7.3. 

 
Figure 7.1.  A money-shot (1), camera surface (2) and look-at point (3). 
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Figure 7.2. Three types of view direction constraints. 

(a) local look-at point; (b) distant look-at point giving constant view direction effect; (c) view direction 
constrained to normal of camera surface 

 

 
Figure 7.3. Example MAYA dependency graph for a StyleCam scene. 
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7.1.2 Animation Clips 

StyleCam animation clips are created by defining sets of animation curves which describe the 

value of a parameter over time.  This is done as one would normally create animations in MAYA, 

using the TRAX non-linear animation editor (Figure 7.4) and the “Graph Editor” window (Figure 

7.5). As a result, the author has the flexibility to use any of MAYA’s animation creation tools in 

the process. For example, animations can be generated by key-framing, physics simulations or 

expressions. 

 
Figure 7.4.  MAYA’s TRAX non-linear animation editor with several TRAX clips. 

 
Figure 7.5.  MAYA’s “Graph Editor” window displaying a curve which describes the camera’s 

displacement over time in the z dimension. 
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StyleCam animations clips are logically composed of one or more object animations.  Each object 

animation (called clips in TRAX) is composed of one or more parameter animation curves. 

Because TRAX has no inherent support for named groups of object animations, we group related 

object animations into StyleCam animation clips by naming the object animations with common 

prefixes.  

7.1.3 Events and Scripts 

StyleCam allows the author to create scripts and associate them with events. Supported events are 

session startup, camera surface entry, camera surface exit, and camera surface timeout (Figure 

7.6).  

 
Figure 7.6. StyleCam events. 
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The session startup event is triggered only once when the user initially begins using StyleCam to 

view a scene. The session startup script can be used to, for example, trigger an introductory 

animation clip, or specify which money-shot to start at. Exit events are triggered when the user 

leaves a camera surface from one of four directions. The associated scripts can specify destination 

camera surfaces and whether to perform an automatic, slate or authored transition. In the case of 

authored and slate transitions, the script also identifies the animation clip to be played. Time-out 

events are triggered when the mouse is idle for a given duration while on a particular camera 

surface, and can be used, for example, to launch an automatic presentation. StyleCam’s event and 

script mechanism provides for the use of logic to dynamically alter the presentation. For example, 

scripts can ensure that some surfaces are only visited once, while others are shown only after 

certain surfaces have already been visited. 

7.2 Interaction 

7.2.1 Session Startup 

When the StyleCam plug-in is activated, the session startup event is fired.  If a session startup 

script exists, it is executed to determine if any animation clips should be played and which 

money-shot to use as the initial view.  If no startup script exists, the first money-shot of the first 

camera surface is used as the initial view and no animation clips are played. If a look-at point is 

defined for this initial camera surface, the orientation of the user camera is set such that the 

camera points directly at the look-at point.  Otherwise, the orientation is set to the normal of the 

camera surface at the money-shot viewpoint’s position.  

7.2.2 Mouse Movements 

User’s mouse movements and button presses are monitored by the StyleCam viewing plug-in.  

Mouse drags result in the camera moving along the current camera surface. Specifically, for a 
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given mouse displacement (dx, dy), the new position of the camera on the camera surface (in uv-

coordinates local to the camera surface) is given by 

(u1,v1) = (u0,v0) + c*(dx, dy) 

where (u0, v0) is the last position of the camera, and c is the gain constant. If either the u or v 

coordinate of the resulting position is not within the range [0,1] , the camera has left the current 

camera surface. At this point, the author-scripted logic is executed to determine the next step. 

First, the destination money-shot is resolved. Next, an appropriate transition is performed to move 

to the next camera surface.  

We implement variable control-display gain on a camera surface by varying the separation 

between the isoparms on the NURBS surface.  Each isoparm represents an equal step in uv-

coordinates, so the closer they are together, the less sensitive the mouse becomes in that direction.  

For example, Figure 7.7 below shows a camera surface with increasingly tight isoparms in the u 

direction near its right edge.  Thus as the camera approaches the right edge of the surface, the 

control-display gain increases (less sensitive) and the pacing slows.  Note that in this example, the 

reduction in sensitivity only occurs in the u direction.  In the v direction, the isoparms are evenly 

spaced indicating a constant control-display gain. 
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Figure 7.7.  Variable control-display gain on a camera surface 

 

7.2.3 Transitions 

As shown in Figure 7.8, StyleCam supports three types of transitions: automatic, authored, and 

slate. 

 
Figure 7.8.  Three types of transitions are made available to the author in StyleCam: (a) automatic 

transitions, (b) authored stylized transitions, (c) slate transitions. 

Automatic transitions are those that smoothly move the camera from one camera surface to 

another without requiring any authored animation clips. Specifically, the user’s view is moved 

from the point of exit from the source camera surface to the position of the money-shot of the 
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destination camera surface. The system performs quaternion interpolation (Shoemake, 1985) of 

camera orientation, combined quaternion and linear interpolation of camera position, and linear 

interpolation of other camera properties such as focal length to complete an automatic transit ion. 

Using quaternion interpolation ensures smooth changes in orientation while defining a smooth 

arcing path for the position. At each time step in the transition, two quaternions representing the 

required fractional rotations of the position and orientation vectors of the camera are calculated 

and applied to the source vectors. In addition, the magnitude of the position vector is adjusted by 

linear interpolation between the source and destination position vector magnitudes. The result is a 

series of intermediate camera positions and orientations as Figure 7.9 illustrates.  

 
Figure 7.9. Combined quaternion and linear interpolation as applied to the camera position vector.  

 

Authored transitions involve the playback of pre-authored animation clips. Any parameter of any 

object in the scene can be animated during an authored transition. This includes the user’s 

viewpoint, view direction, other camera parameters, scene elements and special effects helper 

object parameters such as image plane transparency.  When an authored transition is triggered an 

automatic camera transition is performed in parallel to the playing of the transition’s associated 

animation clips. This allows the author the flexibility to only animate scene elements, letting the 
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system take care of animating the user’s viewpoint. For complete flexibility, clips which animate 

camera parameters automatically override the automatic transition interpolation, giving the author 

complete control over the user experience during the transition including the pacing, framing and 

visual effects. 

Slate transitions are a special case of authored transitions. Used to present 2D media, slate 

transitions are authored by placing an image plane in front of the camera as it transitions between 

camera surfaces. Various visual effects can be achieved by using multiple image planes 

simultaneously and by animating the transparency and other parameters of these image planes. 

While the slate transition is in progress, the camera is simultaneously being smoothly interpolated 

towards the destination camera surface. This essentially allows for a “soft” fade from a camera 

view, to a slate, and back, as Figure 7.10 illustrates. 

 
Figure 7.10. Slate transitions 

 

7.2.4 Temporal Control of Animations 

StyleCam supports temporal control or “scrubbing” of animations. During navigation mode, the 

user’s mouse drags control the camera’s position on the camera surface. However, when the user 
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moves off a camera surface into an animated transition, mouse drags control the (invisible) time 

slider of the animation. Time is advanced when the mouse is dragged in the same direction that 

the camera exited the camera surface and reversed if the directions are also reversed. When the 

mouse button is released, the system takes over time management and smoothly ramps the time 

steps towards the animation’s original playback rate. 

Our present implementation supports scrubbing only for automatic transitions. Authored and slate 

transitions are currently uninterruptible. There is however no technical reason why all transitions 

cannot support scrubbing. In future versions we intend to give the author the choice of 

determining whether or not any given transition is scrubable. This is important since in some 

cases it may be desirable to force the animation to playback uninterrupted and/or at a certain rate.  

For example, a sequence of informative textual information slates may be nonsensical if played in 

reverse. 
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Chapter 8.    Evaluation 

In this chapter, we describe an informal user study which we conducted to get a sense of users’ 

initial reactions to using StyleCam.  The study included seven participants, three of whom had 

experience with 3D graphics applications and camera control techniques, and four who had never 

used a 3D application or camera controls.  The participants were asked to explore a 3D car model 

using StyleCam.  In order to ensure the study resembled our intended casual usage scenario, we 

gave participants only minimal instructions. We explained the click-and-drag action required to 

manipulate the camera, and gave a brief rationale for the study.  We asked the participants to 

imagine they were experiencing an interactive advertisement for that car.  We did not identify the 

various components (camera surfaces, animated transitions, etc) nor give any details on them. 

This was deliberately done so that the participants could experience these components in action 

for themselves and give us feedback without knowing in advance of their existence.  The study 

was conducted on a powerful workstation with a high-resolution CRT monitor for maximum 

graphics performance.  Participants were seated at a clear desk, with the keyboard hidden, leaving 

the mouse as the only input device, as illustrated in Figure 8.1.  The StyleCam experience 

presented to the participants was created by the present author, who is neither a 3D artist nor a 

professional in the film or advertisement production industry.  Notes on user behaviour and 
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observations were made throughout the each test session.  At the end of each session, 

participants’ comments and reactions were recorded.  Screenshots from some of the participants’ 

experiences are shown in Figure 8.2. 

 
Figure 8.1.  A user interacting with a StyleCam experience. 

 
Figure 8.2.  Screenshots of a StyleCam experience. 

One very promising result was that none of the participants realized that they were switching 

between controlling the camera and controlling the time slider on the animations. They felt that 
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they had the same type of control throughout, indicating that our blending between spatial and 

temporal control worked remarkably well. Also the simplicity of the interaction technique – 

essentially a single click and drag action – was immediately understood and usable by all our 

users. 

Another reaction from all the participants was that, to varying degrees, they sometimes felt that 

they were not in control of the interaction when the uninterruptible animations occurred. This was 

particularly acute when the information in the animations seemed unrelated to their current view. 

In these cases, participants indicated that they had no idea what triggered these animations and 

were often annoyed at the sudden interruptions. However when the information was relevant the 

interruptions were not as annoying and often actually appreciated. In some cases participants 

indicated that they would have liked to be able to replay the animation or to have it last longer. 

This highlights the importance of carefully authoring the intermingling of uninterruptible 

animations with the rest of the interaction experience.  

Participants also indicated that they would have liked the ability to click on individual parts of the 

car model in order to inspect them more closely. This request is not surprising since we made no 

effort in our current implement to support pointing. However, we believe that in future research 

StyleCam could be extended to include pointing.  

As we expected, all the participants with prior 3D graphics camera experience stated that they at 

times would have liked full control of the camera, in addition to the constrained control we 

provided. Participants without this prior experience, however, did not ask for this directly 

although they indicated that there were some areas of the car model that they would have liked to 

see but could not get to. However, this does not necessarily imply full control of the camera is 

required. We believe that this issue can be largely alleviated at the authoring phase by 

ascertaining what users want to see for a particular model and ensuring that those features are 



 62 

accessible via the authored camera surfaces. Interestingly, the participant with the most 3D 

graphics experience commented that the automatic transitions and smooth camera paths during 

those transitions were very good and that “for those who don’t know 3D and stuff, this would be 

very good”! 

Central to our StyleCam system is the integration of spatial and temporal controls into a single 

user interaction model. The implications of this interaction model go far beyond a simple 

interaction technique. The blending of spatial and temporal control presents a completely new 

issue that an author needs to understand and consider when creating these interactive visual 

experiences. As evident from the comments of our users, temporal control can feel very much 

like spatial control even when scrubbing backwards in an animation when the animation consists 

of moving the viewing camera around the central object of interest. However, if the animation is 

not around the central object of interest, for example in some of our slate animations, temporal 

control can produce very different sensations. These include the feeling of moving backwards in 

time, interruption of a well-paced animation, jarring or ugly visuals, loss of control and 

sometimes even nonsensical content.  

As a result, the author needs to be extremely cognizant of these artefacts and make design 

decisions as to when and where to relinquish control - and how much control - to the user. At one 

extreme, the author can specify that certain animations are completely uninterruptible by the user. 

In the experience we authored for our user study, we included several of these types of 

transitions. As discussed earlier, whether users favoured this depended heavily on the content. In 

other words, in some cases, as authors, we did not make the right decision. Further improvements 

could include partially interruptible animations. For example, we may not allow movement 

backwards in time but allow the user to control the forward pacing. This will largely solve the 

nonsensical content problem but may still result in occasionally jarring visuals.  
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If we intend to support these various types of control, we must also be able to set the users’ 

expectations of what type of control they have at any given time. It is clear that the current 

StyleCam switching between spatial and temporal control without any explicit feedback to the 

user that a switch is happening works in most cases. In the cases where it fails, either the visual 

content itself should indicate what control is possible, or some explicit mechanism is required to 

inform the user of the current or upcoming control possibilities. In addition to the obvious 

solution of using on-screen visual indicators (e.g., changing cursors) to indicate state, future 

research could include exploring “hint-ahead” mechanisms that indicate upcoming content if the 

user chooses to stay on their current course of travel. For example, as the user reaches the edge of 

a camera surface, a “voice-over” could say something like “now we’re heading towards the 

engine of the car”. Alternatively, a visual “signpost” could fade-in near the cursor location to 

convey this information. These ideas coincide with research that states that navigation routes 

must be discoverable by the user (Furnas, 1997). 

It is very clear from our experiences with StyleCam that the user’s viewing experience is highly 

dependent on the talent and skill of the author. It is likely that skills from movie making, game 

authoring, advertising, and theme park design would all assist in authoring compelling 

experiences. However, we also realize that authoring skills from these other genres do not 

necessarily directly translate due to the unique interaction aspects of StyleCam. 
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Chapter 9.    Future Directions & Conclusions 

During the implementation and evaluation of StyleCam, we identified several avenues that we 

intend to explore further.  This chapter discusses these future directions, and finally draws some 

important conclusions about the StyleCam research. 

Although StyleCam has the appropriate components for creating compelling visual experiences, it 

is still currently a research prototype that requires substantial skills with MAYA. The workflow is 

awkward and not well suited to a real production environment.  As outlined in chapter 6, we 

envision a collection of specialized tools working together with existing 2D and 3D tools to be 

useful and necessary for StyleCam to be adopted. The current implementation of StyleCam 

provides no custom GUIs for authoring StyleCam experiences, rather relying on naming schemes 

and grouping and other “hacks” using built-in MAYA tools.  We strongly believe that the 

development of a custom authoring toolkit , will allow authoring teams to produce better 

StyleCam experiences, which strongly adhere to the authors’ stylistic intentions. With such a 

foundation, it is reasonable to believe that new tools would be designed to work together with the 

StyleCam and traditional tools to further enhance the workflow or provide additional features to 

the StyleCam conceptual model.  
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While convenient for prototyping StyleCam, using MAYA as the viewer for authored experiences 

imposes many limitations to the visual quality of the experiences.  Using a more optimized and 

advanced real-time rendering engine would allow experiences with more complex scene 

geometry and special effects (e.g., increased lighting and reflection realism, particle systems, 

environmental effects, etc..). We intend to explore the feasibility of implementing the StyleCam 

viewer as an application for Microsoft’s X-Box gaming console.  Unfortunately, for the time 

being, it is not possible to get photorealistic rendering. 

Currently, StyleCam provides authoring concepts to produce purely visual interactive 

experiences.   But the visual experience is only half the story.  StyleCam is glaringly lacking in 

audio support.  Integration of soundtracks and other audio into StyleCam will provide authors 

with additional ways of setting the pace and mood of the experience.  A track could be associated 

with the experience, like the background music in a television commercial.   Additional sound 

clips could be triggered and mixed-in by the user crossing over an author-defined hot zone on a 

camera surface. 

A behaviour commonly exhibited by StyleCam users was to click on objects or parts of objects in 

the scene that they wanted to explore more carefully.  We observed that this behaviour came very 

naturally to most users. As a result, we believe that StyleCam might benefit from the addition of a 

picking system, whereby the author could script “responses” to users picking objects.  For 

example, the author may trigger an animation which reveals the engine when the user clicks on 

the car’s hood.  The addition of picking, however, adds a completely new dimension to StyleCam 

– that of object manipulation.  It is not clear whether picking will add to the power of StyleCam 

without sacrificing its simplicity.  Simplicity not only for the viewing user (due to a simplified 

interface) but also for the authoring team since picking is just another dimension requiring 

balance between author and user control. 
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The current StyleCam system does not provide a simple mechanism for authors to directly and 

precisely map mouse movements to changes in the user’s view direction. We intend to explore 

the idea of adding a new type of money-shot/camera surface combination where the money-shot 

represents the camera position, and the camera surface (which would no longer necessarily 

intersect the money-shot position) defines a mapping between mouse movements and camera 

look-at points. Similarly, the author may wish to vary other camera parameters (e.g. lens length or 

‘zoom’) based on user’s mouse movements, perhaps in parallel with the change in camera 

position or look-at point. Such mappings could be implemented by associating a greyscale  texture 

map for each varying parameter to a camera surface. The grey-value of the texture at a particular 

point on the camera surface would provide a value for the varying parameter. 

Authored transitions are not as flexible as we had planned during the design of StyleCam.  

Transitions are triggered (via an authored script) when the user’s camera reaches an edge of a 

camera surface. If the authored transition animates the user camera’s position, the animation will 

likely appear very jarring unless the first animated camera position happens to coincide precisely 

with the point where the camera left the camera surface.  This jumping of the camera can be 

avoided by always fading to black before animating the user camera’s position.  We nevertheless 

feel this to be too strict of a limitation. A possible solution to this problem is to treat the animated 

camera position as a target position and to smoothly move to this position over time. 

Some other avenues we may explore include mechanisms for authoring animation paths using 

alternate techniques such as Chameleon (Fitzmaurice, 1993), and Boom Chameleon (Tsang et al., 

2002)  

Finally, it is important to note that StyleCam is not limited to product or automobile visualization. 

Other domains such as visualization of building interiors and medical applications could also 

utilize the ideas presented in this thesis. Figures 9.1, 9.2, and 9.3 illustrate some examples.  



 67 

StyleCam experiences in different domains will have highly different production pipelines and 

associated roles.  As a result, the tools used in the creation of an automobile advertising 

experience will have different requirements than those used in the creation of a molecular 

visualization experience.  We envision the development of different tools for different domains, 

all implementing the StyleCam concepts in a way suitable for the domain in question.  For 

example, for the visualization of medical or biochemical models, it is likely that only one or two 

people would be involved in the creation of the experiences.  Furthermore, their skill sets will be 

very different from those of directors, animators and graphic designers.  A tool suitable for the 

medical domain would therefore benefit from more automation, less flexibility and greater 

simplicity. 

In this thesis, we investigated the feasibility of creating authored, stylized, interactive 3D 

experiences.  We reviewed the current state -of-the-art in 3D viewing, determining that the user 

experience still falls short of that of traditional advertising media.  In response, we formed a 

conceptual model which gives authors the flexibility needed to create experiences of varying 

visual styles yet which is simple enough to be predictable and usable.  The conceptual model 

consists of camera surfaces and money-shots, animated transitions between these surfaces, and a 

novel interaction technique which seamlessly blends the spatial and temporal navigation into a 

single interaction.  To test the concepts as they developed, prototypes of both the authoring 

environment and the viewing application were implemented in an iterative process.   We authored 

an example experience with our final prototype and tested it in an informal user study to evaluate 

the effectiveness of the conceptual model.  Our main findings indicated that although the 

experiences we authored were certainly not as compelling as a professionally produced 

automobile commercial, the conceptual model was an effective way for an author to transform 

their vision into an interactive experience.  We concluded that with additional refinements, 

professional authoring, faster realtime rendering graphics hardware and high quality content, the 
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StyleCam system could indeed produce experiences rivalling today’s best television commercials, 

while maintaining a high level of user interactivity. 

 
Figure 9.1. Example of StyleCam camera surfaces around a Ribozyme molecule. 

 
Figure 9.2. Example of StyleCam camera surfaces within the interior of a virtual art gallery. 

 
Figure 9.3. Example of StyleCam camera surfaces around a visualization of human vertebrae fragment. 
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